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Multicarbocycle Formation Mediated by
Arenoporphyrin 1,4-Diradicals: Synthesis of
Picenoporphyrins**
Hidenori Aihara, Laurent Jaquinod, Daniel J. Nurco,
and Kevin M. Smith*

Porphyrin chromophores have received much attention,
particularly as photoelectric devices and molecular wires[1±4] in
materials science, as photosensitive drugs for singlet oxygen
formation in photodynamic therapy,[5] and as models for the
photosynthetic reaction center and antenna arrays.[6] Efficient
p-electronic communication between porphyrin macrocycles
is pivotal in various complex functions. Our recent work has
concentrated on the synthesis of novel porphyrin compounds
bearing extended p systems, establishment of novel synthetic
methods for such p-extended porphyrins, and fine-tuning of
their electronic networks.[7] In this connection we recently
developed a novel synthesis of monobenzoporphyrins by
the Diels ± Alder reaction of a pyrroloporphyrin with dimeth-
yl acetylenedicarboxylate.[8] This led us to investigate the
chemistry of 2,3-dialkynylporphyrins to seek more general
methodologies to access such benzoporphyrin deriva-
tives. Adjacent acetylenic units on porphyrins 2 a ± d (see
Scheme 1) might be expected to behave as components of an
ªenediyneº. Thus, they could undergo Bergman cyclization,[9]

that is, thermal benzoannulation via a 1,4-dehydrobenzene
system, to fashion a fused benzo ring onto the porphyrin
periphery.

Herein we report unprecedented multicarbocycle forma-
tion on the porphyrin periphery by Bergman aromatization of
vicinal dialkynylporphrins, to produce a new class of highly p-
extended porphyrins. Precedents for the intramolecular
cyclization of meso-aryl rings onto the porphyrin framework
are limited to the acid-catalyzed condensations of 2-formyl-
and 2-vinyl-tetra-arylporphyrins with a vicinal meso-aryl ring
affording benzocyclohexenone porphyrins,[10] or naphtho-
chlorins.[11]

Nickel(ii) 2,3-dialkynyl-5,10,15,20-tetraphenylporphyrins
2 a ± d were prepared by Pd0-catalyzed cross-coupling reac-
tions[12] of nickel(ii) 2,3-dibromo-5,10,15,20-tetraphenylpor-
phyrin (1)[13] with the corresponding alkynyl trimethylstan-
nanes in good to excellent yields (Scheme 1). Refluxing 2 b
(R�H, Table 1) in 5 % 1,4-cyclohexadiene (CHD, as a
hydrogen source)/chlorobenzene solution at 190 8C gave a
greenish compound as a single product; in the absence of
CHD the same reaction only produced a complex mixture of
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Scheme 1. Preparation of 2,3-dialkynylporpyrins 2. TMS� trimethyl-
silyl.

oligoporphyrins. Surprisingly, none of the expected mono-
benzoporphyrin 4 was obtained. The greenish compound was
characterized by 1H NMR spectroscopy, NOE experiments,
and laser desorption/ionization time-of-flight (LDI-TOF)
mass spectrometry (MS) as the highly p-extended porphyrin
3 b.[14]

The 1H NMR spectrum of 3 b clearly confirms the large
structural and electronic changes of the porphyrin macrocycle
as well as the disappearance of the characteristic terminal
alkyne protons (d� 3.49) observed in 2,3-diethynylporphyrin
2 b. The resonance signal from the aromatic protons on the
benzo ring formed by the Bergman annulation appeared at
d� 8.48 as a sharp singlet. In addition, the absorption
spectrum of 3 b is red-shifted (lmax (CH2Cl2)� 450, 629 nm)
relative to 2 a, a result of the extended p-conjugation in 3 b.

The new porphyrin obtained from this reaction is named as
a ªpicenoporphyrinº after its [5]phenacene structure,[15] and
specifically nickel(ii) 10,15-diphenyl-piceno[20,1,2,3,4,5-fghij]-
porphyrin (3 b).

The molecular structure of 3 b is shown in Figure 1.[16] The
porphyrin macrocycle exhibits a ruffled conformation with a
0.242 � mean deviation of the 24 macrocyclic atoms from
their least-squares plane. The piceno group is nearly planar
with a 0.100 � mean deviation of the 22 atoms from their
least-squares plane. The NiÿN bond lengths are 1.988(4),
1.852(4), 1.970(4), and 1.934(4) � for Ni(1) to N(1) ± N(4)
respectively. The Ni(1)ÿN(2) bond length is noteworthy
because it is the shortest NiÿN bond length reported for any
nickel(ii) porphyrin crystal structure. This feature results from
geometry imposed upon the porphyrin macrocycle by the
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Table 1. Thermal annulation of 2,3-dialkynylporphyrins 2.
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Entry R Conditions 2 (recovered) 3

1 TMS (2 a) 190 8C, 12 h quant. ±
2 H (2 b) 190 8C, 8 h ± 89%
3 Bu (2 c) 190 8C, 60 h 44 % 50%
4[a] Ph (2 d) 280 8C, 18 h ± 86%

[a] 5% CHD in 1,2,4-trichlorobenzene was used as solvent.



ZUSCHRIFTEN

3548 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001 0044-8249/01/11318-3548 $ 17.50+.50/0 Angew. Chem. 2001, 113, Nr. 18

Figure 1. Molecular structure of picenoporphyrin 3 b (thermal ellipsoids at
30% probability). Hydrogen atoms have been omitted for clarity.

rigid piceno group. Of additional note in this regard were
significant contractions of the fused Ca-Cmeso-Ca bond angles
and CaÿCmeso bond lengths along with expansions of the fused
N-Ca-Cmeso bond angles and CbÿCb bond lengths in compar-
ison to other reported nickel(ii) porphyrin crystal structures.[17]

Compounds 2 c and 2 d, which have internal alkynyl
substituents (R�Bu, Ph), undergo the same multicarbocycle
formation to give the corresponding dibutylpicenoporphyrin
3 c in 50 % yield, and diphenylpicenoporphyrin 3 d (86 %),
(Table 1, entries 3, 4). These transformations required a
longer reaction period (60 h, for 3 c) or a higher temperature
(280 8C, for 3 d). Compound 2 a (R�TMS) gave none of the
corresponding picenoporphyrin, and was recovered quantita-
tively after the reaction.

A tentative mechanistic pathway to the picenoporphyrins is
shown in Scheme 2. Thermal annulation of the 2,3-alkynyl
moieties would produce a 1,4-diradical species 5. This
diradical then attacks the vicinal meso-phenyl groups yielding

a planar diradical species 6. Our experimental results indicate
that the steric hindrance of the alkynyl substituents of 2 slows
the thermal annulation. After two successive intermolecular
hydrogen transfers from CHD, 6 affords tetrahydro species 7,
which is oxidized during the course of work-up to give
picenoporphyrins 3 b ± d. The absence of any monobenzopor-
phyrin 4 clearly indicates that intramolecular carbon ± carbon
bond formation via diradicals 5 is faster than intermolecular
hydrogen transfer from CHD.

In conclusion, we have shown that neighboring acetylenic
units on porphyrins provide a means for the efficient
construction of aromatic superstructures triggered by Berg-
man reaction conditions, and give novel access to [n]phen-
acenoporphyrins.

Experimental Section

In a typical Bergman cyclization, 2,3-dialkynylporphyrins 3 (30 mg) was
added to a Schlenk tube and dissolved in anhydrous 5 % 1,4-cyclohexadiene
(CHD) in chlorobenzene or 1,2,4-trichlorobenzene (20 mL). The reaction
flask was sealed well and the mixture was then heated under reflux under
appropriate conditions (see Table 1). After being cooled to room temper-
ature, silica gel (ca. 1 g) was added to the flask, and the solvent was
removed under vacuum. The resulting powder was loaded onto a silica gel
column and eluted initially with 20% toluene in cyclohexane, and then with
CH2Cl2. The major green band was collected and recrystallized from
CH2Cl2/methanol. Compounds 3b ± d were soluble in common organic
solvents despite their rigid piceno structures.
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Scheme 2. Proposed mechanistic pathway to picenoporphyrins 3.
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Olefin Metathesis with 1,1-Difluoroethylene**
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The recent development of ruthenium olefin-metathesis
catalysts coordinated with N-heterocyclic carbene ligands is a
significant advance because it extends the scope of the
reaction to more challenging substrates, that is, those that
are sterically hindered or that contain electronically deacti-
vating groups, as well as monomers with low ring strain.[1±4]

One set of substrates that has received relatively little
attention, however, is the halogenated olefins;[5] the meta-
thesis of allyl bromide, allyl chloride, and related substrates
with the heterogeneous Re2O7/Al2O3/Me4Sn catalyst system
are among the few examples.[6] Most recently, the cross
metathesis of 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexene with ter-
minal olefin[4c] and the dimerization of vinyl gem-difluorocy-
clopropane derivatives[7] have been achieved using [(H2IMes)-
(PCy3)(Cl)2Ru�CHPh] (1) (H2IMes� 1,3-dimesityl-4,5-dihy-
droimidazol-2-ylidene; Cy� cyclohexyl). In these cases, the
substrates are challenging because of the electron-withdraw-
ing nature of the pendent halogens.

A particularly interesting situation arises when the olefin is
directly halogenated, because then the metathesis reaction
will involve a monohalo [M]�CXR or dihalo [M]�CX2

carbene complex rather than the usual alkylidene [M]�CR2.
This possibility has been considered by Beauchamp and co-
workers, who have speculated about the metathesis of directly
fluorinated olefins with nickel or manganese complexes.[8] A
tungsten dichlorocarbene complex [W]�CCl2 has also been
proposed as an active species in the W(CO)6/CCl4/hn catalyst
system.[9] To our knowledge, there has been only one report of
metathesis involving directly halogenated olefins, namely the
cross metathesis of 1-chloro- and 1-bromoethylene with
propylene using Re2O7/Al2O3/Me4Sn.[6e] Herein, we report
the successful metathesis of 1,1-difluoroethylene with ruthe-
nium catalyst 1.

Under an atmosphere of 1,1-difluoroethylene, 1 reacts to
form the corresponding methylidene [(H2IMes)(PCy3)-
(Cl)2Ru�CH2] (2)[10] and difluorocarbene [(H2IMes)-
(PCy3)(Cl)2Ru�CF2] (3) complexes [Eq. (1)].[11] When the
reaction is performed at room temperature, the product
mixture contains approximately 40 % methylidene (2) and
60 % difluorocarbene (3), as well as styrene and b,b-
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